Abstract
A new definition of affine invariant medial axis of planar closed curves is introduced. A point belongs to the affine medial axis if and only if it is equidistant from at least two points of the curve, with the distance being a minimum and given by the areas between the curve and its corresponding chords. The medial axis is robust, eliminating the need for curve denoising. In a dynamical interpretation of this affine medial axis, the medial axis points are the affine shock positions of the affine erosion of the curve. We propose a simple method to compute the medial axis and give examples. We also demonstrate how to use this method to detect affine skew symmetry in real images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.