Abstract

Motivated by the new physical interpretation of quasinormal modes proposed by Maggiore [Phys. Rev. Lett. 100 (2008) 141301], we investigate the quantization of large Schwarzschild-Anti de Sitter black holes in even-dimensional spacetimes, from the interesting highly real quasinormal modes found recently. Following Maggiore's treatment and Kunstatter's method, we derive the area and entropy spectra of the black holes. It is found that the results from both approaches are in full consistency. This implies that one can quantize a black hole via different asymptotic quasinormal modes besides the high damping ones that are usually adopted in the literature. Furthermore, we find that the area and entropy spectra are equidistant and independent of the cosmological constant. However, the spacings depend on the black hole dimension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call