Abstract

Area-selection reactions have been extensively investigated to control or change physicochemical properties of substances with micro- or nanoscale precision. Several polymeric materials called photoresists have been used to mask and pattern the specific region, which can block chemical reactions or deposition. However, they are not suitable for certain chemical reaction since they are vulnerable to high temperature. Here, we report the graphene mask to achieve area-selective chalcogenization, which is performed at high temperature by chemical vapor deposition method. Due to its physicochemical properties, graphene does not allow chalcogen precursor gases to penetrate into metal films. Several characterizations are performed to prove the successful sulfurization and selenization of molybdenum and tungsten films. As an application, WS2 field-effect transistors with graphene mask are fabricated, and they show the typical characteristics of transistors successfully. Therefore, we expect that graphene-assisted area-selective reaction can be utilized for various fields such as semiconductors, sensors, and etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.