Abstract

A proper understanding of the porous structure of packed beds of spheres is imperative in the analysis and design of the processes involving fluid flow and heat and mass transfer. The radial variation in porosity is of specific interest. When the positions and sizes of the spheres are known, the radial variation in porosity can be determined using volume-based, area-based, or line-based approaches. Here, the focus is on the area-based methods which employ the intersections between the spheres and selected cylindrical planes to determine the radial variation in porosity, focusing specifically on the calculation of the area of the curved elliptic intersection between a sphere and a cylindrical plane. Using geometrical considerations, analytical integral expressions have been derived based on the axial direction, angular direction, or the radial direction as independent variables. The integral expressions cannot be integrated analytically and have been evaluated using approximations or numerical integration. However, only indirect validation of the calculation of the intersection area has been provided by comparing the radial porosity profiles obtained with experimental data. This study provides direct validation of the calculated area through refined numerical integration of the primary integral expressions and the evaluation of the area employing computer-aided design software.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call