Abstract
Resistive random-access memory (ReRAM) has several attractive features such as high storage density and high switching frequency with low power consumption. It is hence regarded as the most promising nonvolatile memory material. However, a memristor, which is a primitive component of the ReRAM-based memory, has much lower write endurance. Hence, an error-correcting code (ECC) circuit is indispensable for realizing reliable ReRAM storage. Accordingly, we propose a hybrid CMOS/memristor-based ECC circuit. In the proposed circuit, the blocks with high-frequency write operations are implemented using the conventional CMOS technology and the other blocks are implemented using the memristors to maintain a balance between the area overhead and reliability. Through numerical experiments, we demonstrate that the proposed ECC circuit achieves smaller area and higher reliability than the full memristor-based ECC circuits and achieves much smaller area while preserving the reliability compared with the full CMOS-based ECC circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.