Abstract

Digital calibration techniques are widely utilized to linearize pipelined analog-to-digital converters (ADCs). However, their power dissipation can be prohibitively high, particularly when high-order gain calibration is needed. This paper demonstrates the need for high-order gain calibration in pipelined ADCs designed using low-gain opamps in scaled digital CMOS. For high-order gain calibration, this paper then proposes a design methodology to optimize the data precision (number of bits) within the digital calibration unit. Thus, the power dissipation and chip area of the calibration unit can be minimized, without affecting the ADC linearity. A 90-nm field-programmable gate array synthesis of a second-order gain calibration unit shows that the proposed optimization methodology results in 53% and 30% reductions in digital power dissipation and chip area, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.