Abstract

Protein kinase C (PKC) is activated by lipid second messengers or redox action, raising the question whether these activation modes involve the same or alternate mechanisms. Here we show that both lipid activators and oxidation target the zinc-finger domains of PKC, suggesting a unifying activation mechanism. We found that lipid agonist-binding or redox action leads to zinc release and disassembly of zinc fingers, thus triggering large-scale unfolding that underlies conversion to the active enzyme. These results suggest that PKC zinc fingers, originally considered purely structural devices, are in fact redox-sensitive flexible hinges, whose conformation is controlled both by redox conditions and lipid agonists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call