Abstract

Conventional psychophysical methods ignore the degree of confidence associated with each response. We compared the psychometric function for detection with that for “absolute certainty” in a perimetry-style task, to explore how knowledge of response certainty might aid the estimation of detection thresholds. Five healthy subjects performed a temporal 2-AFC detection task, indicating on each trial whether they were “absolutely certain.” The method of constant stimuli was used to characterize the shape of the two psychometric functions. Four eccentricities spanning central and peripheral vision were tested. Where possible, conditions approximated those of the Humphrey Field Analyzer (spot size, duration, background luminance, test locations). Based on the empirical data, adaptive runs (ZEST) were simulated to predict the likely improvement in efficiency obtained by collecting certainty information. Compared to detection, threshold for certainty was 0.5 to 1.0 dB worse, and slope was indistinguishable across all eccentricities tested. A simple two-stage model explained the threshold difference; under this model, psychometric functions for detection and for certainty-given-detection are the same. Exploiting this equivalence is predicted to reduce the number of trials required to achieve a given level of accuracy by approximately 30% to 40%. The chances of detecting a spot and the chances of certainty-given-detection were approximately the same in young, healthy subjects. This means, for example, that a spot detected at threshold was labeled as “certainly” detected approximately half the time. The collection of certainty information could be used to improve the efficiency of estimation of detection thresholds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.