Abstract

Several experimental results (Schoenberg, M. 1988. Biophys. J. 54:135-148) have shown that the force response of relaxed skinned muscle fibers to fast stretches arises from the presence of cross-bridges rapidly cycling between attached and detached states. These bridges were identified with the M.ATP<-->AM.ATP and M.ADP.Pi<-->AM.ADP.Pi states seen in solution and are commonly referred to as weakly binding bridges. In this paper we have investigated the possibility that weakly binding bridges are also present in resting intact muscle fibers. The force response to fast stretches can be accounted for by assuming the presence in the fiber of a viscous and a viscoelastic passive component arranged in parallel. None of these components has the properties previously attributed to weakly binding bridges. This shows that in intact resting fibers there is no mechanical evidence of attached cross-bridges, suggesting that, under physiological conditions, either the M.ATP or M.ADP.Pi states have a negligibly small affinity for actin or the AM.ATP and AM.ADP.Pi cross-bridge states are unable to bear tension and contribute to fiber stiffness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.