Abstract
Infertility randomized controlled trials (RCTs) are often too small to detect realistic treatment effects. Large observational studies have been proposed as a solution. However, this strategy threatens to weaken the evidence base further, because non-random assignment to treatments makes it impossible to distinguish effects of treatment from confounding factors. Alternative solutions are required. Power in an RCT can be increased by adjusting for prespecified, prognostic covariates when performing statistical analysis, and if stratified randomization or minimization has been used, it is essential to adjust in order to get the correct answer. We present data showing that this simple, free and frequently necessary strategy for increasing power is seldom employed, even in trials appearing in leading journals. We use this article to motivate a pedagogical discussion and provide a worked example. While covariate adjustment cannot solve the problem of underpowered trials outright, there is an imperative to use sound methodology to maximize the information each trial yields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.