Abstract
Concern over human exposure to chlorinated paraffin (CP) mixtures keeps increasing. The absence of a comprehensive understanding of how human exposure varies with the physicochemical properties of CP constituents has hindered the ability to determine at what level of aggregation exposure to CPs should be assessed. We answer this question by comparing exposure predicted with either a "complex" method that utilizes isomer-specific properties or "simplified" methods that rely on median properties of congener, homologue, or short-/medium-/long-chain CP groups. Our results demonstrate the wide range of physicochemical properties across CP mixtures and their dependence on molecular structures. Assuming unit emissions in the environment, these variances translate into an extensive disparity in whole-body concentrations predicted for different isomers, spanning ∼11 orders of magnitude. CPs with 13-19 carbons and 6-10 chlorines exhibit the highest human exposure potential, primarily owing to moderate to high hydrophobicity and slow environmental degradation and biotransformation. Far-field exposure is dominant for most CP constituents. Our study underscores that using average properties of congener, homologue, or S/M/LCCP groups yields results that are consistent with those derived from isomer-based modeling, thus offering an efficient and practical framework for future risk assessments and human exposure studies of CPs and other complex chemical mixtures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.