Abstract

We propose a new method for predicting the solar cycle in terms of the sunspot number (SN) based on multivariate machine learning algorithms, various proxies of solar activity, and the spectral analysis of all considered time series via the fast Fourier transform (through the latter we identify periodicities with which to lag these series and thus generate new attributes –predictors– for incorporation in the prediction model). This combination of three different techniques in a single method is expected to enhance the accuracy and reliability of the solar activity prediction models developed to date. Thus, predictive results for SN are presented for Solar Cycles 25 (the current one) and 26 (using the 13-month smoothed SN, version 2) up until January 2038, yielding maximum values of 134.2 (in June 2024) and 115.4 (in May 2034), respectively, with a root mean squared error (RMSE) of 9.8. These results imply, on the one hand, a maximum of Cycle 25 below the average and, on the other hand, a lower peak than the preceding ones for Cycle 26, suggesting that Solar Cycles 24, 25, and 26 are part of a minimum of the centennial Gleissberg cycle, as occurred with Cycles 12, 13, and 14 in the final years of the 19th century and the early 20th century.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.