Abstract
AbstractA comparison is given between two conditions used to define logical constants: Belnap's uniqueness and Hacking's deducibility of identicals. It is shown that, in spite of some surface similarities, there is a deep difference between them. On the one hand, deducibility of identicals turns out to be a weaker and less demanding condition than uniqueness. On the other hand, deducibility of identicals is shown to be more faithful to the inferentialist perspective, permitting definition of genuinely proof‐theoretical concepts. This kind of analysis is driven by exploiting the Curry–Howard correspondence. In particular, deducibility of identicals is shown to correspond to the computational property of eta expansion, which is essential in the characterization of propositional identity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.