Abstract

Studies of a possible role of tyrosine phosphorylation in the secretory process in rat pancreatic acinar cells provide conflicting conclusions. Recent studies show that tyrosine phosphorylation of the focal adhesion kinase, p125 FAK and the cytoskeletal protein, paxillin, may mediate a number of cellular changes and this phosphorylation is dependent on the activation of the small GTP binding protein, p21 Rho (Rho). In this work we have investigated the role of tyrosine phosphorylation of each of these proteins and of the activation of Rho in pancreatic enzyme secretion. Pretreatment with genistein, a tyrosine kinase inhibitor, decreased CCK-8-stimulated tyrosine phosphorylation of p125 FAK and paxillin and CCK-8-stimulated amylase secretion by more than 60%, raising the possibility that tyrosine phosphorylation of these two proteins could be important in the ability of CCK-8 to stimulate amylase release. However, genistein did not alter the amylase release stimulated by TPA but inhibited TPA-stimulated p125 FAK and paxillin tyrosine phosphorylation by 70%. Pretreatment with C3 transferase, which specifically inactivates Rho, causes a decrease in CCK-8-induced maximal amylase release by 33%. Moreover, C3 transferase pretreatment causes a 48% and a 38% decrease in the tyrosine phosphorylation of p125 FAK and paxillin by CCK-8, respectively. Pretreatment with different concentrations of cytochalasin D, an actin cytoskeleton assembly inhibitor, completely inhibited CCK-8-stimulated tyrosine phosphorylation of p125 FAK and paxillin without having any effect on either the potency or efficacy of CCK-8 at stimulating amylase release. Furthermore, cytochalasin D completely inhibited TPA-stimulated tyrosine phosphorylation of both proteins without affecting TPA-stimulated amylase release. These results show that tyrosine phosphorylation of p125 FAK and paxillin is not required for CCK-8 stimulation of enzyme secretion. However, our results suggest Rho is involved in the CCK-8 stimulation of amylase release by a parallel pathway to its involvement in the CCK-8-stimulated tyrosine phosphorylation of p125 FAK and paxillin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.