Abstract

The two-point force-velocity model allows the assessment of the muscle mechanical capacities in fast, almost fatigue-free conditions. The aim of this study was to investigate the concurrent validity of the two-point parameters with directly measured force and power and to examine the generalization of the two-point parameters across the different functional movement tests of leg muscles. Twelve physically active participants were tested performing three functional lower limb maximal tests under two different magnitudes of loads: countermovement jumps, maximal cycling sprint, and maximal force under isokinetic conditions of the knee extensors. The results showed that all values from the two-point model were higher than the values from the standard tests (p < 0.05). We also found strong correlations between the same variables from different tests (r ≥ 0.84; p < 0.01), except for force in maximal cycling sprint, where it was low and negligible (r = −0.24). The results regarding our second aim showed that the correlation coefficients between the same two-point parameters of different lower limb tests ranged from moderate to strong (r −0.47 to 0.72). In particular, the relationships were stronger between power variables than between force variables and somewhat stronger between standard tests and two-point parameters. We can conclude that mechanical capacities of the leg muscles can be partially generalized between different functional tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.