Abstract

In a recent work, the authors have used Bertrand's postulate to give a partial answer to the conjecture of Mező which says that the hyperharmonic numbers – iterations of partial sums of harmonic numbers – are not integers. In this Note, using small intervals containing prime numbers, we prove that a great class of hyperharmonic numbers are not integers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.