Abstract

Abstract Radial velocities of 15 double-mode bulge RR Lyrae (RR01) stars are presented, 6 of which belong to a compact group of RR01 stars in pulsation space, with the ratio of first-overtone period to fundamental mode period, P fo /P f ∼ 0.74, and P f ∼ 0.44. It has been suggested that these pulsationally clumped RR01 stars are a relic of a disrupted dwarf galaxy or stellar cluster, as they also appear to be spatially coherent in a vertical strip across the bulge. However, the radial velocities of the stars presented here, along with proper motions from Gaia DR2, show a large range of radial velocities, proper motions, and distances for the bulge RR01 stars in the pulsation clump, much larger than the RR01 stars in the Sagittarius dwarf galaxy (Sgr). Therefore, in contrast to the kinematics of the RRL stars belonging to Sgr, and those in and surrounding the bulge globular cluster NGC 6441, there is no obvious kinematic signature within the pulsationally clumped RR01 stars. If the pulsationally clumped RR01 stars belonged to the same system in the past and were accreted, their accretion in the inner Galaxy was not recent, as the kinematic signature of this group has been lost (i.e., these stars are now well-mixed within the inner Galaxy). We show that the apparent spatial coherence reported for these stars could have been caused by small number statistics. The orbits of the RR01 stars in the inner Galaxy suggest that they are confined to the innermost ∼4 kpc of the Milky Way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.