Abstract
The observed distribution of a blending-corrected sample of Einstein ring crossing times, , for microlensing events toward the galactic bulge/bar are analyzed. An inspection of the distribution of crossing times suggests that it may be bimodal, indicating that two populations of lenses could be responsible for observed microlensing events. Given the possibility that microlensing in this direction can be due to the two most common classes of stars, main-sequence and white dwarf, we analyze and show via Monte Carlo simulations that the observed bimodality of can be derived from their accepted mass functions, and the density distributions of both stellar populations in the galactic disk and bulge/bar, with a transverse velocity distribution that is consistent with the density distribution. Kolmogorov-Smirnov (KS) one sample tests shows that a white dwarf population of about 25% of all stars in the galaxy agrees well with the observed bimodality with a KS significance level greater than 97%. This is an expanded and updated version of a previous investigation (Wickramasinghe, Neusima, & Struble, in Mao 2008). A power-point version of the talk, with introductory figures, is found at: https://sites.google.com/site/rhkochconference/agenda-1/program.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.