Abstract

Increased mortality of forest trees, driven directly or indirectly by climate change, is occurring around the world. In western North America, whitebark pine, a high elevation keystone species, and lodgepole pine, a widespread ecologically and economically important tree, have experienced extensive mortality in recent climate-driven outbreaks of the mountain pine beetle. However, even in stands experiencing high levels of mortality, some mature trees have survived. We hypothesized that the outbreak acted as a natural selection event, removing trees most susceptible to the beetle and least adapted to warmer drier conditions. If this was the case, genetic change would be expected at loci underlying beetle resistance. Given we did not know the basis for resistance, we used inter-simple sequence repeats to compare the genetic profiles of two sets of trees, survivors (mature, living trees) and general population (trees just under the diameter preferred by the beetles and expected to approximate the genetic structure of each tree species at the site without beetle selection). This method detects high levels of polymorphism and has often been able to detect patterns associated with phenotypic traits. For both whitebark and lodgepole pine, survivors and general population trees mostly segregated independently indicating a genetic basis for survivorship. Exceptions were a few general population trees that segregated with survivors in proportions roughly reflecting the proportion of survivors versus beetle-killed trees. Our results indicate that during outbreaks, beetle choice may result in strong selection for trees with greater resistance to attack. Our findings suggest that survivorship is genetically based and, thus, heritable. Therefore, retaining survivors after outbreaks to act as primary seed sources could act to promote adaptation. Further research will be needed to characterize the actual mechanism(s) of resistance.

Highlights

  • The capacity of forests to adapt to rapid climate change is not known

  • The relatively flat topography of the plateau combined with its location at the transition zone between lodgepole and whitebark pine-dominated forests allowed us to study the effects of mountain pine beetle (MPB) selection on more than one pine species growing under the same conditions and experiencing the same level of beetle pressure

  • The minimum size of tree attacked by the beetle differed by tree species resulting in the choice of different diameter distributions for sampling general population trees (Table 2)

Read more

Summary

Introduction

The capacity of forests to adapt to rapid climate change is not known. Their ability to adapt will vary greatly depending upon tree species, amount and type of genetic variation existing within and among populations, type and degree of change required, strength and type of selection pressure, heritability of desirable traits, and the timeframe over which selection is able to act. Bioclimatic envelope models used to predict range expansions and contractions of forest trees treat species as clones, with all individuals exhibiting identical responses (Mimura and Aitken, 2007). While these models are useful to provide estimates of shifts in habitat suitability, they can mask the high genetic diversity and geographic differentiation of most tree species (Mimura and Aitken, 2007; Thuiller et al, 2008; Reed et al, 2011). Most management focuses primarily on increasing forest resilience through manipulating stand structure and composition while ignoring genetic diversity, natural selection, and the potential for adaptation (Churchill et al, 2013; O’Hara and Ramage, 2013; DeRose and Long, 2014)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.