Abstract

Substructure decoupling consists in the identification of the dynamic behavior of a structural subsystem, starting from the known dynamic behavior of both the coupled system and the remaining part of the structural system (residual subsystem). The degrees of freedom (DoFs) of the coupled system can be partitioned into internal DoFs (not belonging to the couplings) and coupling DoFs. In direct decoupling, a fictitious subsystem that is the negative of the residual subsystem is added to the coupled system, and appropriate compatibility and equilibrium conditions are enforced at interface DoFs. Compatibility and equilibrium can be required either at coupling DoFs only (standard interface), or at additional internal DoFs of the residual subsystem (extended interface), or at some coupling DoFs and/or some internal DoFs of the residual subsystem (mixed interface). Using a mixed interface, rotational coupling DoFs could be eliminated and substituted by internal translational DoFs. This would avoid difficult measurements of rotational FRFs. This possibility is verified in this paper using simulated experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.