Abstract

Security and privacy concerns have been growing with the increased utilisation of RFID technology in our daily lives. To mitigate these issues, numerous privacy-friendly authentication protocols have been published in the last decade. Random number generators (RNGs) are necessarily used in RFID tags to provide security and privacy. However, low-end RNGs can be the weakest point in a protocol scheme and using them might undesirably cause severe security and privacy problems. On the other hand, having a secure RNG with large entropy might be a trade-off between security and cost for low-cost RFID tags. Furthermore, RNGs used in low-cost RFID tags might not work properly in time. Therefore, we claim that the vulnerability of using an RNG deeply influences the security and privacy level of the RFID system. To the best of our knowledge, this concern has not been considered in the RFID literature. Motivated by this need, in this study, we first revisit Vaudenay’s privacy model which combines the early models and presents a new mature privacy model with different adversary classes. Then, we extend the model by introducing RANDOMEYE privacy, which allows analyzing the security of RNGs in RFID protocols. We further apply our extended model to two existing RFID schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.