Abstract

RB family members are post-transductionally regulated proteins and phosphorylation at Ser/Thr residues leads to their gradual inactivation. Cyclin/cdk complexes are mainly responsible for the regulation of these pocket proteins, which is crucial for release of E2F factor. Despite the fact that E2F release is a phosphorylation-dependent process, it is still not evident how phosphorylation physically determines the shift from the active to the inactive feature of RB molecules. We would like to put forward the hypothesis that Pin1 is involved in RB proteins phosphorylation and E2F release, suggesting an additional post-translational level of control on this family of molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.