Abstract

In a previous paper, Collin & Hur\'e (2001), using a sample of Active Galactic Nuclei (AGN) where the mass has been determined by reverberation studies (Kaspi et al. 2000), have shown that if the optical luminosity is emitted by a steady accretion disc, about half of the objects are accreting close to or higher than the Eddington rate. We conclude here that this result is unavoidable, unless the masses are strongly underestimated by reverberation studies, which does not seem to be the case. There are three issues to the problem: 1. Accretion proceeds at Eddington or super-Eddington rates through thick discs. Several consequences follow: an anti-correlation between the line widths of the lines and the Eddington ratios, and a decrease of the Eddington ratio with an increasing black hole mass. Extrapolated to all quasars, these results imply that the amount of mass locked in massive black holes should be larger than presently thought. 2. The optical luminosity is not produced directly by the gravitational release of energy, and super-Eddington rates are not required. The optical luminosity has to be emitted by a dense and thick medium located at large distances from the center (10$^3$ to $10^4$ gravitational radii). It can be due to reprocessing of the X-ray photons from the central source in a geometrically thin warped disc, or in dense blobs forming a geometrically thick system, which can be a part of the accretion flow or the basis of an outflow. 3. Accretion discs are completely non standard. Presently neither the predictions of models nor the observed spectral distributions are sufficient to help choosing between these solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.