Abstract
Abstract Amphipods, like most swimming crustaceans, employ a drag-based mechanism to produce thrust. The propulsors are paddle-shaped pleopods that move parallel to the direction of motion. These paired abdominal limbs generate both the propulsive thrust and the respiratory currents that bathe the thoracic gills. This study addresses the basic kinematics of motion and the pleopodal skeletomusculature of the deep-sea scavenger Eurythenes gryllus. The limb beat cycle consists of a power stroke where the three pleopod pairs, with their setal fan outstretched, swing sequentially through an arc parallel to the body axis, and then return anteriorly in a collapsed and bent configuration. The joint connecting the body to the muscular peduncle is complex, allowing promotion and remotion along the main body axis. Several hard plates for extrinsic muscle attachment are surrounded by arthrodial membrane. The extrinsic musculature is proportioned accordingly, with a large mass of muscles controlling the power stroke a...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.