Abstract

Phytoplankton:virus interactions are important factors in aquatic nutrient cycling and community succession. The number of viral progeny resulting from an infection of a cell critically influences the propagation of infection and concomitantly the dynamics of phytoplankton populations. Host nucleotide content may be the resource limiting viral particle assembly. We present evidence for a strong linear correlation between measured viral burst sizes and viral burst sizes predicted from the host DNA content divided by the viral genome size, across a diversity of phytoplankton:viral pairs. An analysis of genome sizes therefore supports predictions of taxon-specific phytoplankton population density thresholds beyond which viral proliferation can trim populations or terminate phytoplankton blooms. We present corollaries showing that host:virus interactions may place evolutionary pressure towards genome reduction of both phytoplankton hosts and their viruses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.