Abstract

We investigate the form of the momentum distribution function for protons and electrons in an advection-dominated accretion flow (ADAF). We show that for all accretion rates, Coulomb collisions are too inefficient to thermalize the protons. The proton distribution function is therefore determined by the viscous heating mechanism, which is unknown. The electrons, however, can exchange energy quite efficiently through Coulomb collisions and the emission and absorption of synchrotron photons. We find that for accretion rates greater than ~10-3 of the Eddington accretion rate, the electrons have a thermal distribution throughout the accretion flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.