Abstract
The effects of size on animal behaviour, ecology, and physiology are widespread. Theoretical models have been developed to predict how animal form, function, and performance should change with increasing size. Yet, numerous animals undergo dramatic shifts in ecology (e.g. habitat use, diet) that may directly influence the functioning and presumably the scaling of the musculoskeletal system. For example, previous studies have shown that banded watersnakes (Nerodia fasciata) switch from fish prey as juveniles to frog prey as adults, and that fish and frogs represent functionally distinct prey types to watersnakes. We therefore tested whether this ontogenetic shift in diet was coupled to changes in the scaling patterns of the cranial musculoskeletal system in an ontogenetic size series (70-600 mm snout-vent length) of banded watersnakes. We found that all cranial bones and gape size exhibited significant negative allometry, whereas the muscle physiological cross-sectional area (pCSAs) scaled either isometrically or with positive allometry against snout-vent length. By contrast, we found that gape size, most cranial bones, and muscle pCSAs exhibited highly significant positive allometry against head length. Furthermore, the mechanical advantage of the jaw-closing lever system remained constant over ontogeny. Overall, these cranial allometries should enable watersnakes to meet the functional requirements of switching from fusiform fish to bulky frog prey. However, recent studies have reported highly similar allometries in a wide diversity of vertebrate taxa, suggesting that positive allometry within the cranial musculoskeletal system may actually be a general characteristic of vertebrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.