Abstract
Psychiatric diseases are strongly influenced by genetics, but genetically guided treatments have been slow to develop, and precise molecular mechanisms remain mysterious. Although individual locations in the genome tend to not contribute powerfully to psychiatric disease incidence, genome-wide association studies (GWAS) have now successfully linked hundreds of specific genetic loci to psychiatric disorders [1-3]. Here, building upon results from well-powered GWAS of four phenotypes relevant to psychiatry, we motivate an exploratory workflow leading from GWAS screening, through causal testing in animal models using methods such as optogenetics, to new therapies in human beings. We focus on schizophrenia and the dopamine D2 receptor (DRD2), hot flashes and the neurokinin B receptor (TACR3), cigarette smoking and receptors bound by nicotine (CHRNA5, CHRNA3, CHRNB4), and alcohol use and enzymes that help to break down alcohol (ADH1B, ADH1C, ADH7). A single genomic locus may not powerfully determine disease at the level of the population, but the same locus may nevertheless represent a potent treatment target suitable for population-wide therapeutic approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.