Abstract

We explore a new class of supersymmetric models for lepton masses and mixing angles where the role of flavour symmetry is played by modular invariance. The building blocks are modular forms of level N and matter supermultiplets, both transforming in representations of a finite discrete group ΓN. In the simplest version of these models, Yukawa couplings are just modular forms and the only source of flavour symmetry breaking is the vacuum expectation value of a single complex field, the modulus. In the special case where modular forms are constant functions the whole construction collapses to a supersymmetric flavour model invariant under ΓN, the case treated so far in the literature. The framework has a number of appealing features. Flavon fields other than the modulus might not be needed. Neutrino masses and mixing angles are simultaneously constrained by the modular symmetry. As long as supersymmetry is exact, modular invariance determines all higher-dimensional operators in the superpotential. We discuss the general framework and we provide complete examples of the new construction. The most economical model predicts neutrino mass ratios, lepton mixing angles, Dirac and Majorana phases uniquely in terms of the modulus vacuum expectation value, with all the parameters except one within the experimentally allowed range. As a byproduct of the general formalism we extend the notion of non-linearly realised symmetries to the discrete case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call