Abstract
Relative growth rate (RGR) is a fundamental trait for comparative plant ecology but cannot be measured in situ, leading to problems in interpreting vegetation function. However, the components of RGR (net assimilation rate (NAR), leaf area ratio (LAR), leaf weight ratio (LWR), and specific leaf area (SLA)) can be calculated for wild plants from morphological measurements (leaf area, leaf dry mass, whole plant dry mass), which potentially reflect RGR. Seeds of 19 species from Italian prealpine calcareous grasslands were collected and seedlings were cultivated under controlled conditions. RGR, NAR, LAR, LWR and SLA were analysed. The results demonstrated that RGR was positively correlated with SLA and LAR (p < 0.01). Furthermore, LAR was positively correlated with LWR and negatively with NAR (p < 0.05). Monocotyledons showed significantly higher LAR, LWR and NAR than dicotyledons, as the latter allocated a greater proportion of biomass to stems, but RGR and SLA showed no such phylogenetic constraint. Therefore SLA is the most reliable indicator of RGR in ecological and functional surveys of prealpine calcareous grasslands, and has the additional advantage that it can be measured from leaf material alone. Lower mean RGR and SLA for calcareous grassland species suggests that this vegetation is less likely to recover from the effects of disturbance than meadows and dry meadows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.