Abstract

The Bell inequality is thought to be a common constraint shared by all models of local hidden variables that aim to describe the entangled states of two qubits. Since the inequality is violated by the quantum mechanical description of these states, it purportedly allows distinguishing in an experimentally testable way the predictions of quantum mechanics from those of models of local hidden variables and, ultimately, ruling the latter out. In this paper, we show, however, that the models of local hidden variables constrained by the Bell inequality all share a subtle, though crucial, feature that is not required by fundamental physical principles and, hence, it might not be fulfilled in the actual experimental setup that tests the inequality. Indeed, the disputed feature neither can be properly implemented within the standard framework of quantum mechanics and it is even at odds with the fundamental principle of relativity. Namely, the proof of the inequality requires the existence of a preferred absolute frame of reference (supposedly provided by the lab) with respect to which the hidden properties of the entangled particles and the orientations of each one of the measurement devices that test them can be independently defined through a long sequence of realizations of the experiment. We notice, however, that while the relative orientation between the two measurement devices is a properly defined physical magnitude in every single realization of the experiment, their global rigid orientation with respect to a lab frame is a spurious gauge degree of freedom. Following this observation, we were able to explicitly build a model of local hidden variables that does not share the disputed feature and, hence, it is able to reproduce the predictions of quantum mechanics for the entangled states of two qubits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.