Abstract
Recent studies have correlated dysregulated miRNA expression with diseased hearts. With the aim of developing an easily manipulated experimental model, phenylephrine (PE) was added to cultured zebrafish hearts to study the expression of miR1 and miR133a by qRT-PCR. Both miRs were downregulated, with greater downregulation leading to higher hypertrophy. The involvement of this miRs was confirmed by the in-vivo inoculation of complementary sequences (AmiR1 and AmiR133a). HSP70 (involved in transporting proteins and in anti-apoptosis processes) was increased in both treatments. Hyperplasia was observed in the epicardium based on WT1 expression (embryonic epicardial cell marker) in both the PE treatment and AmiR133a treatment. The treatment with AmiR1 showed only cardiomyocyte hypertrophy. This ex-vivo model revealed that miR1 and miR133a play a key role in activating early processes leading to myocardium hypertrophy and epicardium hyperplasia and confirmed the expected similarities with hypertrophic disease that occurs in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.