Abstract

A new generation of satellites for Earth observation and telecommunications are being designed and built with off the shelf components. This is driving down costs and permitting the launch of large satellite swarms with unprecedented spatial and temporal coverage. On-orbit maneuvers are commonly performed using ion thrusters. Mercury is one of the cheapest and easiest to store propellants for electric propulsion. While some mercury released in Low Earth Orbit may escape Earth’s gravitational field, mercury emissions originating from many common orbital maneuvers will return to Earth. The environmental and human health implications of such releases have not been evaluated. Using an atmospheric chemical transport model, we simulate global deposition of mercury released from satellite propulsion systems. We estimate that 75% of the mercury falling back to Earth will be deposited in the world’s oceans, with potentially negative implications for commercial fish and other marine life. Understanding the scale of this novel mercury source in a post-Minamata Convention world is necessary to limit ecosystem exposure to mercury contamination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.