Abstract
Anopheles fluviatilis sensu lato, a primary malaria vector in India, has been identified to be comprised of four cryptic species, provisionally designated as species S, T, U and V. However, Kumar et al. (Mol Ecol Resour, 2013;13:354-61) considered all of the then known three members of this species complex (S, T and U) conspecific. The specific status of species S and T was refuted based on the lack of sufficient barcode gap in mitochondrial-CO1 and the perceived presence of heterozygotes in populations as detected through one of the two species-specific PCR assays employed for the cryptic species identification. The existence of species U was refuted claiming that earlier investigations have already refuted their existence. Here we discuss problems associated with the CO1-based barcode approach for delimitation of cryptic species, the perceived heterozygosity between species S and T based on a species-specific PCR assay, and interpretation of published reports. We demonstrated that fixed differences do exist in the ITS2-rDNA sequence of species S and T with no evidence of heterozygotes in sympatric populations and, that the observed heterozygosity by Kumar et al. in the ITS2-based species diagnostic PCR is due to the high mispriming tendency of the T-specific primer with species S. We infer that mitochondrial DNA-based ‘barcoding gap’, an arbitrary threshold recommended for species delimitation, alone, is inadequate to delimit the members of An. fluviatilis complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.