Abstract
In this article I intend to show that certain aspects of the axiomatical structure of mathematical theories can be, by a phenomenologically motivated approach, reduced to two distinct types of idealization, the first-level idealization associated with the concrete intuition of the objects of mathematical theories as discrete, finite sign-configurations and the second-level idealization associated with the intuition of infinite mathematical objects as extensions over constituted temporality. This is the main standpoint from which I review Cantor’s conception of infinite cardinalities and also the metatheoretical content of some later well-known theorems of mathematical foundations. These are, the Skolem-Lowenheim Theorem which, except for its importance as such, it is also chosen for an interpretation of the associated metatheoretical paradox (Skolem Paradox), and Godel’s (first) incompleteness result which, notwithstanding its obvious influence in the mathematical foundations, is still open to philosophical inquiry. On the phenomenological level, first-level and second-level idealizations, as above, are associated respectively with intentional acts carried out in actual present and with certain modes of a temporal constitution process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.