Abstract

It has been established that the number of isozymes (different forms of an enzyme encoded by different gene loci) is highly conserved in diploid angiosperms and gymnosperms. In contrast, allopolyploid angiosperms display an increase in isozyme number due to the addition of divergent genomes. Lycopods (Microphyllophyta) are an ancient lineage of vascular plants having very high chromosome numbers. It has been maintained that lycopods acquired these high chromosome numbers through repeated episodes of polyploidy. Despite high chromosome numbers, however, lycopod species having the lowest chromosome numbers within genera possess the number of isozymes typical of diploid seed plants for all enzymes examined except triosephosphate isomerase. There is, therefore, no genetic evidence from enzyme electrophoresis for polyploidy in these plants. These results are comparable to findings for other homosporous pteridophytes including the ferns (Pteridophyta) and horsetails (Arthrophyta). Alternative hypotheses for widespread genetic diploidy in homosporous pteridophytes are 1) repeated cycles of allopolyploidy followed by gene silencing; 2) repeated cycles of autopolyploidy, which would result in duplicated, but not divergent genes for isozymes; 3) initiation of these lineages with relatively high chromosome numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call