Abstract
Labor market indicators are critical for policymakers, but measurement error in labor force survey data is known to be substantial. In this paper, I quantify the implications of classification errors in the U.S. Current Population Survey (CPS), in which respondents misreport their true labor force status. Once I correct for measurement error using a latent variable approach, the unemployment rate is on average 0.8 percentage points (ppts) higher than the official unemployment rate, with a maximum of 2.0 ppts higher between 1996 and 2018. This paper further quantifies the contributions to business-cycle fluctuations in the unemployment rate from job separation, job finding, and participation. Correcting for misclassification changes previous studies' results about the contributions of these transition probabilities: job separation accounts for more of the unemployment fluctuations, while participation accounts for fewer. The methodology I propose can be applied to any other labor force survey in which labor force status is observed for three periods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.