Abstract

Insulin therapies for Type 1 diabetes (T1D) have limitations, such as glucose fluctuations, hypoglycaemia, and weight gain. Only pramlintide is approved with insulin. However, its short half-life limits efficacy, requiring multiple daily injections and increasing hypoglycaemia risk. New strategies are needed to improve glycaemic control. Dual amylin and calcitonin receptor agonists are potent insulin sensitizers developed for Type 2 diabetes (T2D) as they improve glucose control, reduce body weight, and attenuate hyperglucagonemia. However, it is uncertain if they could be used to treat T1D. Sprague Dawley rats received a single intravenous injection of streptozotocin (STZ) (50 mg·kg-1) to induce T1D. Humulin (1 U/200 g·day-1 or 2 U/200 g·day-1) was continuously infused, while half of the rats received additional KBP-336 (4.5nmol·kg-1 Q3D) treatment. Bodyweight, food intake, and blood glucose were monitored throughout the study. An oral glucose tolerance test was performed during the study. Treatment with Humulin or Humulin + KBP-336 improved the health of STZ rats. Humulin increased body weight in STZ rats, but KBP-336 attenuated these increases and maintained a significant weight loss. The combination exhibited greater blood glucose reductions than Humulin-treated rats alone, reflected by improved HbA1c levels and glucose control. The combination prevented hyperglucagonemia, reduced amylin levels, and increased pancreatic insulin content, indicating improved insulin sensitivity and beta-cell preservation. The insulin sensitizer KBP-336 lowered glucagon secretion while attenuating insulin-induced weight gain. Additionally, KBP-336 may prevent hypoglycaemia and improve insulin resistance, which could be a significant advantage for individuals with T1D seeking therapeutic benefits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.