Abstract

Heavy metal(loid)s in the environment threaten food safety and human health. Health risk assessment of vegetables based on total or bioaccessible heavy metal(loid)s was widely used but can overestimate their risks, so exploring accurate methods is urgent for food safety evaluation and management. In this study, a total of 224 frequently consumed vegetables and their corresponding grown soils were collected from Yunnan, Southwest China. The total contents and bioaccessibilities of heavy metal(loid)s in vegetables were measured, their health risks were evaluated using the non-carcinogenic and carcinogenic risk models provided by USEPA. Besides, the gastrotoxicity of high-risk vegetables was also evaluated using a human cell model. Results showed that 6.25–43.8 % of Cr, Cd, and Pb contents in Zea mays L., Coriandrum sativum L., or Allium sativum L. exceeded the maximum permissible level of China, which were not consistent with those in corresponding soils. The bioaccessibility of Cr, Cd, As, Pb, Cu, Zn, Ni, and Mn in vegetables in the gastric phase was 0.41–93.8 %. Health risks based on bioaccessibility were remarkably decreased compared with total heavy metal(loid)s, but the unacceptable carcinogenic risk (CR > 10−4) was found even considering the bioaccessibility. Interestingly, gastric digesta of high-risk vegetables did not trigger adverse effects on human gastric mucosa epithelial cells, indicating existing health risk assessment model should be adjusted by toxic data to accurately reflect its hazards. Taken together, both bioaccessibility and toxicity of heavy metal(loid)s in vegetables should be considered in accurate health risk assessment and food safety-related policy-making and management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.