Abstract

This study investigates the impact of solvent post-treatment on polyamide-based thin film composite (TFC) membranes, specifically examining the effect on commercial nanofiltration (NF) and reverse osmosis (RO) membranes. Na2SO4 rejection and increase in pure water permeance (PWP) were considered as the output parameters. The disparity in Hansen solubility parameters (HSP) between the post-treatment solution and the polyamide layer of the TFC membrane, denoted by Ra, is well adapted to understand the enhancement in water permeance through the membranes upon treatment. Aqueous solutions of dimethylformamide with a Ra value of 4, acetonitrile with a Ra value of 8.3, and ethanol with a Ra value of 12.7 were used as the post-treatment solutions. Our experimental design, based on the Box-Behnken design of Response Surface Methodology, incorporates variables such as the concentration of the solvent in the solution (% v/v), Ra value, and treatment time (s). Our findings demonstrate that the effect of post-treatment on the TFC membranes is not governed by the Ra value. Notably, while the post-treatment with the aqueous solution of acetonitrile, 80% v/v for 30 s, had considerable effects on NF membranes (124.5% enhancement in PWP; reduction of 3.5% in Na2SO4 rejection), its impact on RO membranes was negligible. Several factors explain this discrepancy, including the limitations of the HSP model for composite polymers, the inaccuracy of the PWP or salt rejection as a swelling indicator, variations in the HSP values of the polyamide layers for different membranes, and possible modifications in the interface between the support membrane and the polyamide layer. In summary, our study provides insights into the complex interactions between solvents and composite membranes, indicating that HSP alone is not a decisive factor in predicting post-treatment effects on polyamide-based TFC membranes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.