Abstract

To properly assess risk, an animal must focus its attention on relevant external stimuli; however, attention can be reallocated when distracting stimuli are present. This reallocation of attention may interfere with an individual’s ability to effectively assess risk and may impede its response. Multiple stimuli presented together can have additive effects as distractors, and these include stimuli in different modalities. Although changes in noise and water flow are detectable by some bivalves, this has not been studied in the context of risk assessment or distraction. We experimentally exposed giant clams (Tridacna maxima) to changes in water particle movement through underwater sound (motorboat noise) and increased water flow to determine whether these stimuli, individually or together, modified risk assessment or caused distraction. We found that clams responded to sound, flow, and their combination by increasing frequency of mantle retractions (a potential anti-predator response) when exposed to a stimulus. Sound alone did not change risk assessment in either the latency to close or to reemerge following closure. However, when exposed to both stimuli simultaneously, clams increased their latency to close. We suggest that clams perceive sound and flow in an additive way, and are thus distracted. Interestingly, and uniquely, clams discriminate these multimodal stimuli through a single sensory modality. For sessile clams, anthropogenic noise is detectable, yet unavoidable, suggesting that they be especially vulnerable to marine noise pollution.

Highlights

  • Most animals experience some form of predation risk in their lifetimes (Lima & Dill, 1990)

  • We marked giant clams (n = 32) for subsequent study within Gump Reef in Cook’s Bay, Mo’orea, French Polynesia (−17.482215, −149.827079), a marine protected area that has been the site of previous studies of clam anti-predator behavior (Johnson et al, 2016; Dehaudt et al, 2019)

  • Clam mantle retraction is presumably a discrete anti-predator response used for protection and to scare potential predators with the water expelled from its siphon during retraction (Wilkens, 1986; Land, 2002)

Read more

Summary

Introduction

Most animals experience some form of predation risk in their lifetimes (Lima & Dill, 1990). Individuals must be able to properly assess risk of predation, weighing the costs and benefits of either remaining or fleeing (Caro, 2005). Flight or other forms of protection are often associated with large energetic costs; individuals must expend energy to flee and lose out on potential energy that could have been obtained through feeding (Ydenberg & Dill, 1986; Caro, 2005). Attention to tasks and external stimuli is limited, divisible and is sensitive to different modalities

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call