Abstract
Generalized additive models for location, scale, and shape (GAMLSS) are a class of semi-parametric models with potential applicability to health care cost data. We compared the bias, accuracy, and coverage of GAMLSS estimators with two distributions [gamma and generalized inverse gaussian (GIG)] using a log link to the generalized linear model (GLM) with log link and gamma family and the log-transformed OLS. The evaluation using simulated gamma data showed that the GAMLSS and GLM gamma model had similar bias, accuracy, and coverage and outperformed the GAMLSS GIG. When applied to simulated GIG data, the GLM gamma was similar or improved in bias, accuracy, and coverage compared to the GAMLSS GIG and gamma; furthermore, the GAMLSS estimators produced wildly inaccurate or overly-precise results in certain circumstances. Applying all models to empirical data on health care costs after a fall-related injury, all estimators produced similar coefficient estimates, but GAMLSS estimators produced spuriously smaller standard errors. Although no single alternative was best for all simulations, the GLM gamma was the most consistent, so we recommend against using GAMLSS estimators using GIG or gamma to test for differences in mean health care costs. Since GAMLSS offers many other flexible distributions, future work should evaluate whether GAMLSS is useful when predicting health care costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.