Abstract

Dynamic mean field theory is applied to the problem of forest fires. The starting point is the Monte Carlo simulation in a lattice of a million cells. The statistics of the clusters is obtained by means of the Hoshen–Kopelman algorithm. We get the map pn → pn + 1, where pn is the probability of finding a tree in a cell, and n is the discrete time. We demonstrate that the time evolution of p is chaotic. The arguments are provided by the calculation of the bifurcation diagram and the Lyapunov exponent. The bifurcation diagram reveals several windows of stability, including periodic orbits of length three, five and seven. For smaller lattices, the results of the iteration are in qualitative agreement with the statistics of the forest fires in Canada in the years 1970–2000.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.