Abstract
Previous reports suggest the application of exogenous BMPs can accelerate bone formation during distraction osteogenesis (DO). However, there are drawbacks associated with the use of exogenous BMPs. A possible alternative to the use of exogenous BMPs is to upregulate the expression of endogenous BMPs. Since DO results in spontaneously generated de novo bone formation in a uniform radiographic, histological, and biomechanical temporal sequence, a genetically engineered model lacking endogenous BMP2 should have measurable deficits in bone formation at different time points. We performed DO on BMP2(fl/+) and BMP2(fl/+ cre) mice using a miniature Ilizarov fixator. Distracted samples were collected at various time points and analyzed using real time-quantitative PCR, lCT, radiology, immunohistochemistry, histology, and biomechanical testing. Immunohistochemical studies of 34-day heterozygous samples showed reduced expression of BMP2, BMP7, BMPR1a, ACTR1, and ACTR2b. lCT analysis of 51-day heterozygous samples revealed a decrease in trabecular number and increase in trabecular separation. Biomechanical testing of 51-day heterozygous samples revealed decreased stiffness and increased ultimate displacement. Radiological analysis showed the heterozygotes contained a decreased bone fill score at 17, 34, and 51 days. These data suggest endogenous BMPs are important for bone healing and manipulating endogenous BMPs may help accelerate bone consolidation during DO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.