Abstract

We tested the claim that the dopaminergic dysfunction of Rett Syndrome (RTT) also occurs in Mecp2-deficient mice that serve as a model of the syndrome. We used positron emission tomography (PET) to image dopamine D2 receptors (D2R) and transporters (DAT) in women with RTT and in Mecp2-deficient mice, and D1R and D2R density was measured in postmortem human tissue by autoradiography. Results showed 1) significantly reduced D2R density in the striatum of women with RTT compared to control subjects. 2) PET imaging of mouse striatum similarly demonstrated significant reductions in D2R density of 7–10 week-old hemizygous (Mecp2-null) and heterozygous (HET) mice compared to wild type (WT) mice. With age, the density of D2R declined in WT mice but not HET mice. 3) In contrast, postmortem autoradiography revealed no group differences in the density of D1R and D2R in the caudate and putamen of RTT versus normal control subjects. 4) In humans and in the mouse model, PET revealed only marginal group differences in DAT. The results confirm that dopaminergic dysfunction in RTT is also present in Mecp2-deficient mice and that reductions in D2R more likely explain the impaired ambulation and progressive rigidity observed rather than alterations in DAT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.