Abstract
Initial data for numerical evolutions of binary-black holes have been dominated by "conformally flat" (CF) data (i.e., initial data where the conformal background metric is chosen to be flat) because they are easy to construct. However, CF initial data cannot simulate nearly extremal spins, while more complicated "conformally curved" initial data (i.e., initial data in which the background metric is \emph{not} explicitly chosen to be flat), such as initial data where the spatial metric is chosen to be proportional to a weighted superposition of two Kerr-Schild (SKS) black holes can. Here we establish the consistency between the astrophysical results of these two initial data schemes for nonspinning binary systems. We evolve the inspiral, merger, and ringdown of two equal-mass, nonspinning black holes using SKS initial data and compare with an analogous simulation using CF initial data. We find that the resultant gravitational-waveform phases agree to within $\delta \phi \lesssim 10^{-2}$ radians and the amplitudes agree to within $\delta A/A \lesssim 5 \times 10^{-3}$, which are within the numerical errors of the simulations. Furthermore, we find that the final mass and spin of the remnant black hole agree to one part in $10^{5}
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.