Abstract

Beginning with Devaney, several authors have studied transcendental entire functions for which every point in the escaping set can be connected to infinity by a curve in the escaping set. Such curves are often called Devaney hairs. We show that, in many cases, every point in such a curve, apart from possibly a finite endpoint of the curve, belongs to the fast escaping set. We also give an example of a Devaney hair which lies in a logarithmic tract of a transcendental entire function and contains no fast escaping points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.