Abstract

Summary We examined the relative importance of resource composition (carbon : phosphorus molar ratios which varied between 9 and 933) and growth rate (0·5–1·5 h−1) to biomass carbon : nitrogen : phosphorus stoichiometry and nucleic acid content in Escherichia coli grown in chemostats, and in other heterotrophic prokaryotes using published literature. Escherichia coli RNA content and the contribution of RNA‐P to total cellular P increased with increasing growth rate at all supply C : P ratios. Growth rate had a much stronger effect on biomass C : P than did supply C : P, and increased RNA content resulted in low biomass C : P and N : P ratios. However, we observed only twofold variations in biomass C : P and N : P ratios in the experiments, despite a difference of two orders of magnitude in C : P and N : P supply. The response of biomass C : P and N : P ratios to alteration of the supply C : P and N : P ratios revealed that E. coli was strongly homeostatic in its elemental composition. This result, and a literature survey, suggest that each heterotrophic bacterial strain regulates its elemental composition homeostatically within a relatively narrow range of characteristic biomass C : P and N : P ratios. Thus shifts in the dominance of different bacterial strains in the environment are probably responsible for the large variation in bacterial biomass C : P, as has been suggested for crustacean zooplankton. These findings indicate that bacteria are more like animals than plants in terms of biomass C : P and N : P homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.