Abstract

ObjectiveThere have only been a few studies on the stiffness and load bearing characteristics of guidewires used to deliver devices during endovascular procedures, particularly endovascular aneurysm repair. The aim of this study was to compare the load bearing characteristics of typical stiff and floppy wires, including in the context of consistency for each wire type.MethodsTwo sets of stiff guidewires (Lunderquist Extra-Stiff and Amplatz Super Stiff [0.035” × 260 cm]), were compared with a floppy hydrophilic guidewire (Radifocus Stiff M [0.035” × 260 cm]). Radial stiffness was defined as the force (newtons [N]) needed to deform the wires on an electromechanical dynamometer. Tests were repeated with three runs on three sets of the same wire to check for consistency. Data were logged on proprietary dynamometric software and peak load values assessed per wire. Peak deformation forces (PDFs) from straight configuration to midwire deformation at 15 mm was translated into Microsoft Excel for statistical analysis in Minitab 19 for Windows.ResultsThere was good agreement within each wire set, with no difference in PDFs from runs for each wire (p > .10). Mean ± standard deviation PDFs were 7.83 ± 0.23 N for the Lunderquist, 9.87 ± 0.92 N for the Amplatz, and 7.84 ± 0.52 N for the Radifocus wires. The Amplatz wire exhibited the greatest resistance to deformation vs. both the Lunderquist and Radifocus wires (p < .001, one way analysis of variance). Both Amplatz and Radifocus wires had non-linear deformation characteristics.ConclusionThis study confirmed that the represented hydrophilic wire is more deformable than the stiff wires. The Amplatz wire has complex construction features that yielded surprising baseline stiffness characteristics. The linear stiffness characteristics of the Lunderquist wire possibly contribute to it being the preferred choice for large endograft delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.