Abstract

A recent study by van Ede et al. (2012) shows that the accuracy and reaction time in humans of tactile perceptual decisions are affected by an attentional cue via distinct cognitive and neural processes. These results are controversial as they undermine the notion that accuracy and reaction time are influenced by the same latent process that underlie the decision process. Typically, accumulation-to-bound models (like the drift diffusion model) can explain variability in both accuracy and reaction time by a change of a single parameter. To elaborate the findings of van Ede et al., we fitted the drift diffusion model to their behavioral data. Results show that both changes in accuracy and reaction time can be partly explained by an increase in the accumulation of sensory evidence (drift rate). In addition, a change in non-decision time is necessary to account for reaction time changes as well. These results provide a subtle explanation of how the underlying dynamics of the decision process might give rise to differences in both the speed and accuracy of perceptual tactile decisions. Furthermore, our analyses highlight the importance of applying a model-based approach, as the observed changes in the model parameters might be ecologically more valid, since they have an intuitive relationship with the neuronal processes underlying perceptual decision making.

Highlights

  • IntroductionAttention has been shown to affect choice behavior [1,2,3,4]

  • In perceptual decision making, attention has been shown to affect choice behavior [1,2,3,4]

  • The study by van Ede et al, (2012) shows that the accuracy and reaction time (RT) of tactile perceptual decisions are affected by the validity of an attentional cue via different cognitive and neural processes

Read more

Summary

Introduction

Attention has been shown to affect choice behavior [1,2,3,4]. How attentional cues are processed by the brain to affect decision process remains an open question. Van Ede et al, (2012) [5] addressed this question by investigating whether the validity of an attentional cue affects the accuracy and speed of a tactile perceptual choice via different cognitive and neural processes. In their experiment, participants received an auditory cue that indicated if a tactile stimulation would be applied to the left or to the right hand. To investigate the temporal dynamics of prior knowledge on the decision process, the authors manipulated the time between a cue and the following tactile target. Time courses were calculated for reaction time (RT) and accuracy using a moving-window approach across different cue-target-intervals (CTI; see Figure 1)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.